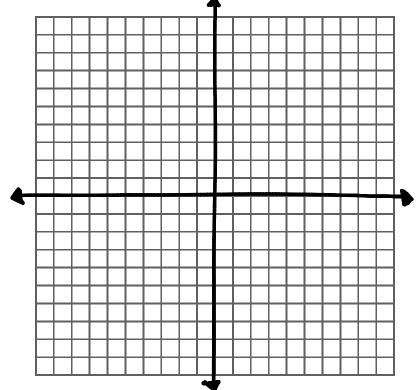
10.3 Logarithmic Functions


By: Cindy Alder

Objectives:

- Define a logarithm.
- Convert between exponential and logarithmic forms.
- Solve logarithmic equations of the form $\log_a b = k$ for a, b, or k.
- Define and graph logarithmic functions.
- Use logarithmic functions in applications involving growth or decay.

Review

• Graph $y = 2^x$

Find and graph it's inverse.

Logarithm

For all positive numbers a, with $a \neq 1$, and all positive numbers x

means the same as

Meaning of $\log_a x$

A logarithm is an _____

The expression $\log_a x$ represents the exponent to which the base a must be raised to obtain x.

Converting Between Exponential and Logarithmic Forms

Fill in the blanks with the equivalent forms.

Exponential Form	Logarithmic Form
$3^2 = 9$	
$\left(\frac{1}{5}\right)^{-2}=25$	
	$\log_{10} 100,000 = 5$
	$\log_4\frac{1}{64}=-3$

• Fill in the blanks with the equivalent forms.

Exponential Form	Logarithmic Form
$2^5 = 32$	
$100^{\frac{1}{2}} = 10$	
	$\log_8 4 = \frac{2}{3}$
	$\log_6 \frac{1}{1296} = -4$
$\sqrt[3]{64} = 4$	

Solving Logarithmic Equations

Solve each equation.

$$\log_4 x = -2$$

$$\log_{\frac{1}{2}}(3x+1)=2$$

Solving Logarithmic Equations

Solve each equation.

$$\log_x 3 = 2$$

$$\log_{49} \sqrt[3]{7} = x$$

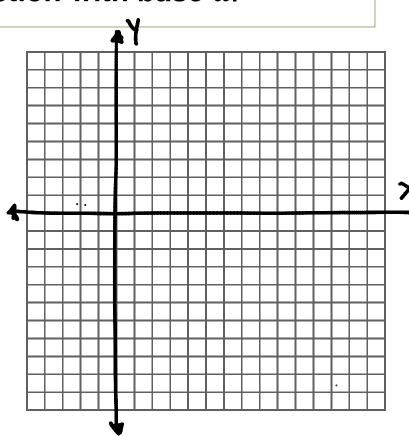
Properties of Logarithms

For any positive real number b, with $b \neq 1$, the following are true.

and

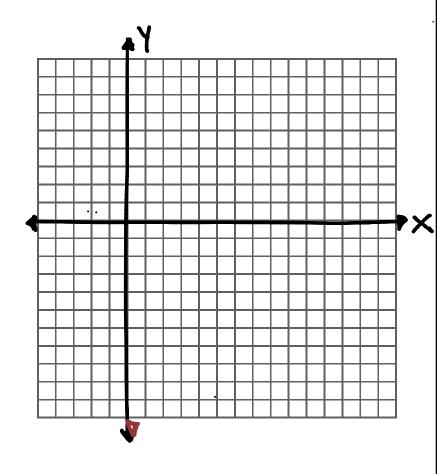
Evaluate each logarithm.

$$\log_{\sqrt{2}} \sqrt{2}$$


$$log_{0.2} 1$$

Logarithmic Function

If a and x are positive numbers, with $a \neq 1$, then


defines the logarithmic function with base a.

• Graph $g(x) = \log_3 x$

Graphing a Logarithmic Function

• Graph $f(x) = \log_{\frac{1}{2}} x$

Characteristics of the Graph of $g(x) = \log_a x$

Logarithmic Function

- The graph contains the point _____.
- The function is ______.
 - When a > 1, the graph will _____ from left to right, from the ____.
 - from the _____. When 0 < a < 1, the graph will _____ from left to right, from the _____
- The graph will approach the ______, but never touch it. (The y-axis is an ______.)
- The domain is ______, and the range is ______.

Solving an Application of a Logarithmic Function

 Suppose the gross national product (GNP) of a small country (in millions of dollars) is approximated by

$$G(t) = 15.0 + 2.00 \log_{10} t$$

Where t is the time in years since 2003.

• Approximate to the nearest tenth the GNP for t = 1 and t = 10.