9.6 More About Parabolas & Their Applications

OBJECTIVES:

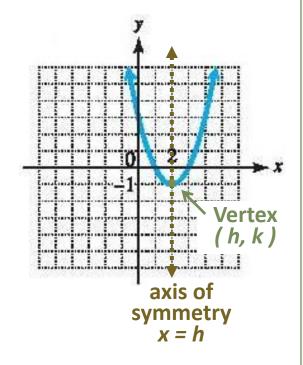
- Find the vertex of the vertical parabola.
- Graph a quadratic function.
- Use the discriminant to find the number of *x*-intercepts of a parabola with a vertical axis.
- Use quadratic functions to solve problems involving maximum or minimum values.
- Graph parabolas with horizontal axes.

Written by: Cindy Alder

Quadratic Equations

➤ We can tell a lot about a quadratic equation when it is in the form:

$$f(x) = a(x - h)^2 + k$$


- ➤ Vertex:
- >Axis of Symmetry:
- ➤ Direction of opening: **UP** if

DOWN if

➤ Wide/Narrow:

WIDE if NARROW if

- ➤ Vertical Shift:
- ➤ Horizontal Shift:

Quadratic Equations

What do we do when the quadratic equation is in the form:

$$f(x) = ax^2 + bx + c$$

COMPLETE THE SQUARE!!!!

Complete the Square when a=1

$$f(x) = x^2 - 4x + 5$$

- Group the variable terms.
 Slide the constant over to "deal with later".
- Find the "magic" number needed to complete the square.
- Add <u>and</u> subtract the "magic" number to the equation.
- Factor and combine like terms.

Find the Vertex of the Graph of

$$f(x) = x^2 + 6x + 14$$

Find the Vertex of the Graph of

$$f(x) = x^2 - x + 7$$

Complete the Square when $a \neq 1$

$$f(x) = -3x^2 + 6x - 1$$

- Group the variable terms. Slide the constant over to "deal with later".
- Factor out the coefficient on x^2 from the variable terms.
- Find the "magic" number needed to complete the square.
- Add the "magic" number to the equation and
- Subtract the product of the "magic" number and the coefficient you factored out from the equation.
- Factor and combine like terms.

Find the Vertex of the Graph of

$$f(x) = 4x^2 - 32x + 58$$

Find the Vertex of the Graph of

$$f(x)=2x^2-4x+1$$

The Vertex Formula

$$f(x) = ax^2 + bx + c$$

Vertex Formula

$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

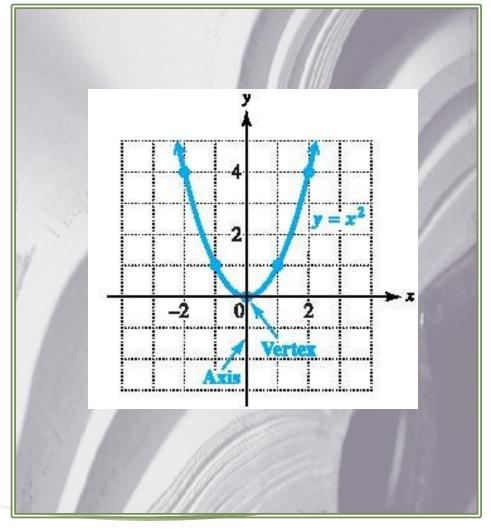
$$x = \frac{-b}{2a}$$

$$y = f$$
 (the value you got for x)

Find the vertex using the vertex formula.

$$f(x) = x^2 + 8x + 10$$

Vertex Formula


Find the vertex using the vertex formula.

$$f(x) = -2x^2 + 3x - 1$$

Graphing a Quadratic Function

> STEPS

- Does the graph open up or down?
- > Find the vertex.
 - > Vertex formula
 - Complete the square
- > Find any intercepts.
 - \triangleright y-intercept: set x = 0
 - \triangleright *x*-intercept: set y = 0
- > Complete the graph.
 - ➤ Plot points found.
 - ➤ Plot additional points as needed, using symmetry.

^{*}A minimum of two points on either side of the vertex is needed for an accurate graph.

Graph the Quadratic Equation:

$$f(x) = x^2 - 6x + 5$$

- □ Step 1 **Does the graph open up or down?**
 - The graph will open up because a is positive.
- Step 2 Find the vertex.

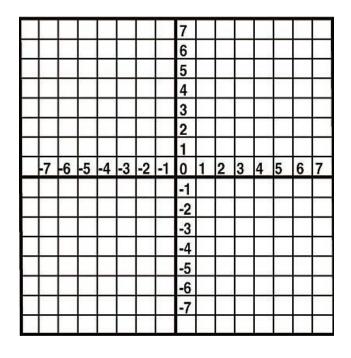
Graph the Quadratic Equation (continued)

$$f(x) = x^2 - 6x + 5$$

□ Step 3 - **Find any intercepts.**

Graph the Quadratic Equation (continued)

$$f(x) = x^2 - 6x + 5$$

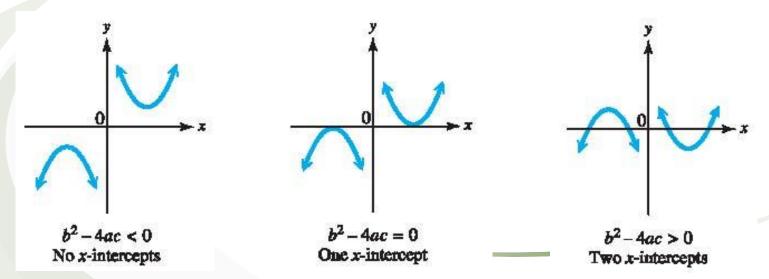

- Step 4 Complete the graph.
 - ➤ Plot points found.

 \triangleright Vertex: (3, -4)

 \triangleright y-intercept: (0,5)

 \triangleright x-intercepts: (5,0) and (1,0)

- Plot additional points as needed, using symmetry.
 - \triangleright Using symmetry the graph will also pass through the point (6,5).


Graph the Function $f(x) = x^2 - x - 6$

$$f(x) = x^2 - x - 6$$

							7					200		
							6					186		
							5							
						20.	4					2100-		
0							3							
							2							
							1	2				2000		
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
							-1					X:0:=		
							-2					0.00		3
							-3		Γ					
							-4					50 S		
							-5							
							-6					3883		
							-7							Т

The Discriminant and *x*-intercepts.

- The discriminant $b^2 4ac$, from the quadratic formula, can be used to determine the number of x-intercepts of the graph of a quadratic function.
 - If the discriminant is negative, the parabola will have no x-intercepts.
 - If the discriminant is 0, the parabola will have only one x-intercept.
 - If the discriminant is positive, the parabola will have two x-intercepts.

Using the Discriminant

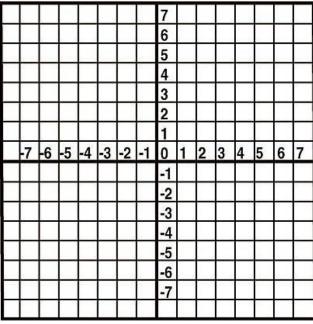
• Find the discriminant and use it to determine the number of *x*-intercepts of the graph of each quadratic function.

A)
$$f(x) = -3x^2 - x + 2$$
 B) $f(x) = x^2 - x + 1$

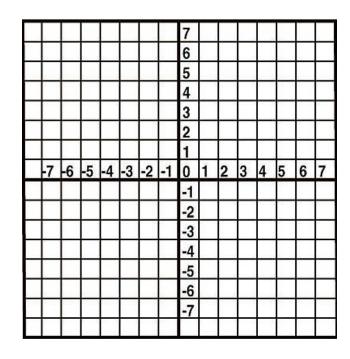
C)
$$f(x) = x^2 - 8x + 16$$

Parabola with Horizontal Axis

The graph of


$$x = ay^2 + by + c$$
 or $x = a(y - k)^2 + h$

is a parabola with vertex (h, k) and the horizontal line y = k as axis of symmetry. The graph opens to the right if a > 0 and to the left if a < 0.


Graph the Parabola

- Graph $x = (y 2)^2 3$. Give the vertex, axis, domain, and range.
 - Identify h and k.

Graph the Parabola

• Graph $x = -y^2 + 2y + 5$. Give the vertex, axis, domain, and range.

Graphs of Parabolas

GRAPHS OF PARABOLAS

Equation	Graph						
$y = ax^2 + bx + c$ $y = a(x - h)^2 + k$	(h, k)						
$x = \alpha y^2 + by + c$ $x = \alpha (y - k)^2 + h$	$(h, k) \qquad \text{These graphs} \\ a > 0 \qquad \text{represent functions.} \qquad a < 0$ $(h, k) \qquad 0 \qquad (h, k)$ $0 \qquad (h, k) \qquad 0$ $x \qquad 0 \qquad (h, k)$ $a > 0 \qquad \text{These graphs are not} \\ a > 0 \qquad \text{graphs of functions.} \qquad a < 0$						

Solving Maximum/Minimum Problems

General Concepts

- The vertex is either the **highest** or **lowest** points on a parabola depending on which way it opens.
- The *y*-value of the vertex gives the maximum or minimum value of all *y*'s and the *x*-value of the vertex tells where the maximum or minimum occurs.
- ➤ In an applied problem, if you can create a quadratic function with the information given, you can then find the vertex to give you the maximum or minimum y-value and what x-value is required to get the maximum or minimum.

Finding the Maximum Area

 A farmer has 120 feet of fencing. He wants to put a fence around a rectangular field next to a building. Find the maximum area he can enclose, and the dimensions of the field when the area is maximized.

Finding the Maximum Height

 A toy rocket is launched from the ground so that its distance in feet above the ground after t seconds is

$$s(t) = -16t^2 + 208t$$

Find the maximum height it reaches and the number of seconds it takes to reach that height.

