8.1 RADICAL EXPRESSIONS AND GRAPHS

- Find roots of numbers.
- Find principal roots.
- Graph functions defined by radical expressions.
- Find nth roots of nth powers.
- Use a calculator to find roots.

$\sqrt[n]{a}$

The *n*th root of *a*, written $\sqrt[n]{a}$, is a number whose *n*th power equals *a*. That is,

SIMPLIFYING HIGHER ROOTS

$$\circ \sqrt[3]{27}$$

$$\circ \sqrt[3]{216}$$

$$\sqrt[4]{\frac{16}{81}}$$

•
$$\sqrt[3]{0.064}$$

FINDING PRINCIPAL ROOTS

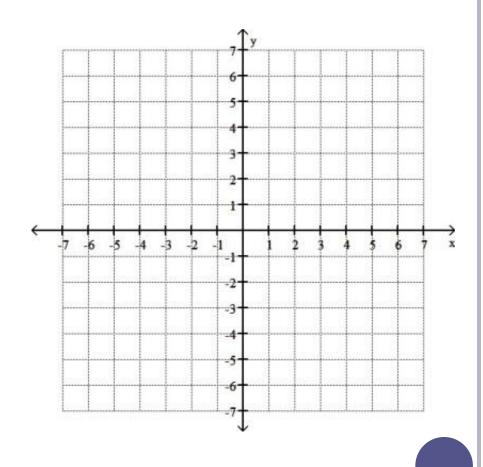
• Case 1 If *n* is ______ and *a* is ______, then

• Case 2 If *n* is ______, then

• Case 3 If *n* is _____, then

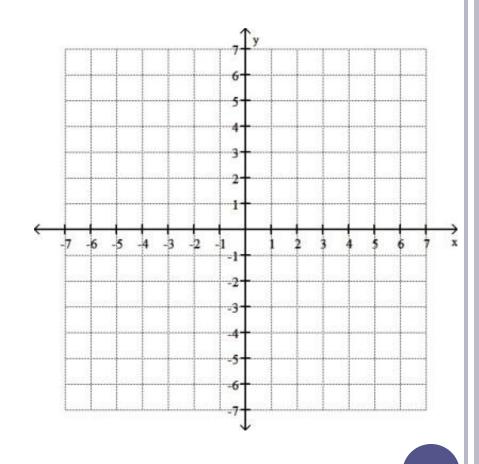
FINDING ROOTS

$$\circ -\sqrt{36}$$

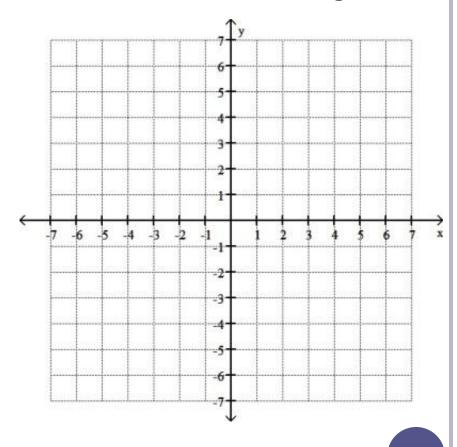

$$-\sqrt[4]{16}$$

FINDING ROOTS

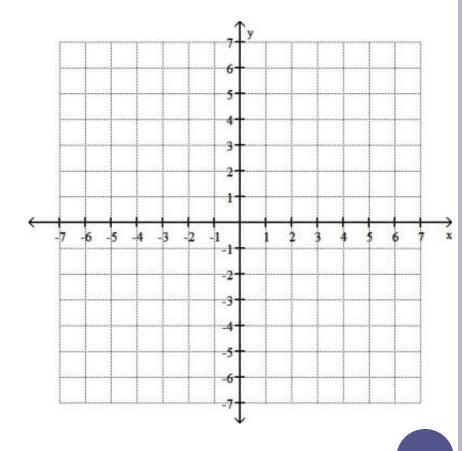
$$\circ -\sqrt[5]{243}$$


SQUARE ROOT FUNCTION

• Graph $f(x) = \sqrt{x}$ and give the domain and range.


CUBE ROOT FUNCTION

• Graph $f(x) = \sqrt[3]{x}$ and give the domain and range.


GRAPHING FUNCTIONS DEFINED WITH RADICALS

• Graph $f(x) = \sqrt{x+2}$ and give the domain and range.

GRAPHING FUNCTIONS DEFINED WITH RADICALS

• Graph $f(x) = \sqrt[3]{x} - 2$ and give the domain and range.

FIND NTH ROOTS OF NTH POWERS.

SIMPLIFYING SQUARE ROOTS BY USING ABSOLUTE VALUE

$$\circ$$
 $\sqrt{15^2}$

$$\circ \sqrt{(-12)^2}$$

•
$$\sqrt{y^2}$$

•
$$\sqrt{(-y)^2}$$

FIND NTH ROOTS OF NTH POWERS.

SIMPLIFYING HIGHER ROOTS BY USING ABSOLUTE VALUE

$$\circ \sqrt[4]{(-5)^4}$$

$$\circ \sqrt[5]{(-5)^5}$$

•
$$-\sqrt[6]{(-3)^6}$$

•
$$-\sqrt[4]{m^8}$$

SIMPLIFYING HIGHER ROOTS BY USING ABSOLUTE VALUE

$$0 \sqrt[3]{x^{24}}$$

$$\circ \sqrt[6]{y^{18}}$$

•
$$\sqrt[3]{\chi^{15}}$$

$$\sqrt{x^{12}}$$

FINDING AN APPROXIMATION FOR ROOTS

• Use a calculator to approximate each radical to three decimal places.

$$\circ$$
 $\sqrt{17}$

$$\circ$$
 $-\sqrt{362}$

•
$$\sqrt[3]{9482}$$