8.2 RATIONAL EXPONENTS

Objectives

- Use exponential notation for nth roots.
- Define and use expressions of the form $a^{\frac{m}{n}}$.
- Convert between radicals and rational exponents.
- Use the rules for exponents with rational exponents.

EXPONENTIAL NOTATION FOR NTH ROOTS

If $\sqrt[n]{a}$ is a real number then,

 $Evaluate\ each\ exponential.$

$$\circ 32^{\frac{1}{5}}$$

$$\circ 64^{\frac{1}{2}}$$

$$\circ$$
 $-81^{\frac{1}{4}}$

$$\circ (-81)^{\frac{1}{4}}$$

EXAMPLE 1 (CONTINUED)

Evaluate each exponential.

$$(-64)^{\frac{1}{3}}$$

$$\circ \left(\frac{1}{27}\right)^{\frac{1}{3}}$$

$$\circ \left(\frac{1}{16}\right)^{\frac{1}{4}}$$

$$\circ (-27)^{\frac{1}{3}}$$

EXPONENTIAL NOTATION FOR NTH ROOTS

If m an n are positive integers with $\frac{m}{n}$ in lowest terms, then,

provided that $a^{\frac{1}{n}}$ is a real number.

FLOWER POWER

 $Evaluate\ each\ exponential.$

$$\circ 25^{\frac{3}{2}}$$

$$\circ 27^{\frac{2}{3}}$$

$$\circ -16^{\frac{3}{2}}$$

$$(-64)^{\frac{2}{3}}$$

EXAMPLE 2 (CONTINUED)

Evaluate each exponential.

$$(-36)^{\frac{3}{2}}$$

$$(-125)^{\frac{4}{3}}$$

EXPONENTIALS WITH NEGATIVE RATIONAL EXPONENTS

If $a^{\frac{m}{n}}$ is a real number, then,

Evaluate each exponential.

$$^{\circ}81^{-\left(\frac{3}{4}\right)}$$

$$\circ 36^{-\left(\frac{3}{2}\right)}$$

EXAMPLE 3 (CONTINUED)

Evaluate each exponential.

$$\circ \left(\frac{64}{25}\right)^{-\frac{3}{2}}$$

$$\circ \left(\frac{216}{125}\right)^{-\frac{2}{3}}$$

CONVERTING BETWEEN RATIONAL EXPONENTS AND RADICALS

If all indicated roots are real numbers, then

CONVERTING BETWEEN RATIONAL EXPONENTS AND RADICALS

If all indicated roots are real numbers, then

Write each exponential as a radical. Assume that all variables represent positive real numbers.

$$0.19^{\frac{1}{2}}$$

$$0.11\frac{3}{4}$$

$$0.14x^{\frac{2}{3}}$$

$$5x^{\frac{3}{5}} - (2x)^{\frac{3}{5}}$$

EXAMPLE 4 (CONTINUED)

Write each exponential as a radical. Assume that all variables represent positive real numbers.

$$\circ x^{-\frac{5}{7}}$$

$$(x^2 + y^2)^{\frac{1}{3}}$$

Write each radical as an exponential.

$$o\sqrt{37}$$

$$\circ \sqrt[3]{10}$$

$$0.04\sqrt{98}$$

$$\circ \sqrt[8]{x^8}$$

Rules for Rational Exponents

Let *r* and *s* be rational numbers. For all real numbers *a* and *b* for which the indicated expressions exists, the following are true.

$$3^{\frac{1}{2}} \cdot 3^{\frac{1}{3}}$$

$$\circ \frac{7^{\frac{2}{3}}}{\frac{4}{7^{\frac{2}{3}}}}$$

EXAMPLE 6 (CONTINUED)

$$\circ \left(\frac{a^{\frac{1}{3}}b^{\frac{2}{3}}}{b}\right)^{6}$$

$$\circ \left(\frac{a^3b^{-4}}{a^{-2}b^{\frac{1}{5}}}\right)^{-\frac{1}{2}}$$

EXAMPLE 6 (CONTINUED)

$$r^{\frac{2}{5}}(r^{\frac{3}{5}}+r^{\frac{8}{5}})$$

$$\circ \sqrt[4]{x^3} \cdot \sqrt[5]{x}$$

$$\circ \frac{\sqrt{x^5}}{\sqrt[3]{x}}$$

EXAMPLE 7 (CONTINUED)

$$\circ \sqrt[3]{\sqrt[6]{x}}$$

$$\circ$$
 $\sqrt{\sqrt[4]{Z}}$